Main Article Content

Abstract

Penelitan ini bertujuan membandingkan komposisi Vitamin A pada ASI yang disimpan menggunakan Mikrocontroller Arduino Nano, dengan Lemari Pendingin dan Suhu Ruangan. Penelitian ini berjenis percobaan murni. Teknik penyampelan yang digunakan adalah penyampelan purposive dan diperoleh sebanyak 45 sampel. Kadar komposisi Vitamin A ASI diuji dengan Spektrofotometrik UV-Vis, Perlakuan dilakukan dengan memompa menggunakan pompa doubell pumping kemudian disimpan menggunakan Mikrocontroller Arduino Nano, Lemari Pendingin dan Suhu Ruangan selama 8 jam, Analisa data menggunakan uji One-Way Anova. Hasil penelitian menunjukan bahwa komposisi Vitamin A ASI yang disimpan menggunakan penyimpanan Mikrocontroller Arduino Nano pada suhu 300C lebih tinggi dibanding ASI yang disimpan pada Lemari pendingin pada suhu 40C dan pada Suhu Ruangan (p=0,064). Vitamin A lebih baik disimpan menggunakan Mikrocontroller Arduino Nano.

Keywords

Vitamin A ASI Mikrocontroller Arduino Nano Lemari Pendingin Suhu Ruangan

Article Details

How to Cite
Nuraiman, N., Mardiana Ahmad, & As’ad, S. (2020). Grade Komposisi Vitamin A Air Susu Ibu (ASI) pada Penyimpanan Microkontroler Arduino Nano dengan Penyimpanan pada Lemari Pendingin dan Suhu Ruangan: Comparison Between the Grade of Vitamin A in Breast Milk Stored in Arduino Nano Microcontroller Storage and the One Stored in Refrigerator and Room Temperature. Poltekita : Jurnal Ilmu Kesehatan, 14(2), 100-103. https://doi.org/10.33860/jik.v14i2.172

References

  1. Reyes-Foster BM, Carter SK, Hinojosa MS. Human Milk Handling and Storage Practices Among Peer Milk-Sharing Mothers. J Hum Lact. 2017;33(1):173–80.
  2. Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Vol. 12, Nutrition Journal. 2013.
  3. Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: A review on its composition and bioactivity. Vol. 91, Early Human Development. 2015. p. 629–35.
  4. Ewaschuk JB, Unger S, O’Connor DL, Stone D, Harvey S, Clandinin MT, et al. Effect of pasteurization on selected immune components of donated human breast milk. J Perinatol. 2011;31(9):593–8.
  5. Ballard O, Morrow AL. Human Milk Composition. Nutrients and Bioactive Factors. Vol. 60, Pediatric Clinics of North America. 2013. p. 49–74.
  6. Ezaki S, Ito T, Suzuki K, Tamura M. Association between Total Antioxidant Capacity in Breast Milk and Postnatal Age in Days in Premature Infants. J Clin Biochem Nutr. 2008;42(2):133–7.
  7. Palmeira P, Carneiro-Sampaio M. Immunology of breast milk. Rev Assoc Med Bras. 2016;62(6):584–93.
  8. Zonneveld MI, Brisson AR, van Herwijnen MJC, Tan S, van de Lest CHA, Redegeld FA, et al. Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures. J Extracell Vesicles. 2014;3(1).
  9. Ahrabi AF, Handa D, Codipilly CN, Shah S, Williams JE, McGuire MA, et al. Effects of Extended Freezer Storage on the Integrity of Human Milk. J Pediatr. 2016;177:140–3.
  10. Akdag A, Nur Sari F, Dizdar EA, Uras N, Isikoglu S, Erel O, et al. Storage at -80??C Preserves the Antioxidant Capacity of Preterm Human Milk. J Clin Lab Anal. 2014;28(5):415–8.
  11. Substitusi P, Terigu T, Tepung D. Indonesian Journal of Human Nutrition. 2014;1(2):114–27.
  12. Chang YC, Chen CH, Lin MC. The macronutrients in human milk change after storage in various containers. Pediatr Neonatol. 2012;53(3):205–9.
  13. Aksu T, Atalay Y, Türkyılmaz C, Gülbahar Ö, Hirfanoğlu IM, Demirel N, et al. The effects of breast milk storage and freezing procedure on interleukine-10 levels and total antioxidant activity. J Matern Neonatal Med. 2015;28(15):1799–802.
  14. Bransburg-Zabary S, Virozub A, Mimouni FB. Human milk warming temperatures using a simulation of currently available storage and warming methods. PLoS One. 2015;10(6).
  15. Delgado FJ, Contador R, Álvarez-Barrientos A, Cava R, Delgado-Adámez J, Ramírez R. Effect of high pressure thermal processing on some essential nutrients and immunological components present in breast milk. Innov Food Sci Emerg Technol. 2013;19:50–6.
  16. Evans TJ, Ryley HC, Neale LM, Dodge J a, Lewarne VM. Effect of storage and heat on antimicrobial proteins in human milk. Arch Dis Child. 1978;53(3):239–41.
  17. Mello-Neto J, Rondó PHC, Oshiiwa M, Morgano MA, Zacari CZ, Domingues S. The influence of maternal factors on the concentration of vitamin A in mature breast milk. Clin Nutr. 2009;28(2):178–81.
  18. Dror DK, Allen LH. Retinol-to-fat ratio and retinol concentration in humanmilk show similar time trends and associations with maternal factors at the population level: A systematic review and meta-analysis. Adv Nutr. 2018;9:332S-346S.
  19. Schweigert FJ, Frey SK, Mothes R, Dary O, Juarez P, Lascano V. A new test kit’s potential for the rapid analysis of vitamin A in human and cow milk. Sight Life Mag. 2011;25(3):18–22.
  20. Bates CJ. Vitamin A in pregnancy and lactation. Proc Nutr Soc. 2005;42(01):65–79.