Testing the Effect of Grape Seed Extract (Vitis Vinifera L) on the Healing Process of Cut Wounds in Wistar White Rats

https://doi.org/10.33860/jik.v17i4.3639

Authors

  • Siska Saidi Rizali Department of Biomedicine, University of Prima Indonesia, Medan, Indonesia
  • William Leslie Department of Biomedicine, University of Prima Indonesia, Medan, Indonesia
  • Muhammad Chairul Department of Biomedicine, University of Prima Indonesia, Medan, Indonesia
  • Edlin Edlin Department of Biomedicine, University of Prima Indonesia, Medan, Indonesia

Keywords:

Grape Seed Extract, Wounds Healing, Antioxidants

Abstract

Daily actions cause wounds. Normal and abnormal wounds generate inflammation. Grape (Vitis vinifera l) possesses antioxidant and wound-healing properties. The research aims to test grape seed extract’s ability to heal cuts in white Wistar rats. The study is conducted solely on white Wistar rats. The type of research used was lab-experimental quantitative research with SPSS data. The study sample consisted of white Wistar rats (Rattus norvegicus). In this trial, grape seed extract was given at 50, 100, 150, and 200 mg/kg BW. Animals were sliced at 2 cm length with a depth of ± 2 mm to the dermis layer and treated according to their group. Grape seed extract cream healed mice-cut wounds. On the 14th day, group P0 had 72.3% wound healing, group P1 84.3%, group P2 94%, group P3 93.9%, and group P4 100%. Thus, group P4 healed faster than P0, P1, P2, and P3. Grape seed extract cream accelerates skin regeneration and stimulates fibroblasts more than base cream, according to wound healing percentages. Grape seed extract at 200 mg/kgBW accelerated wound healing more than other treatments. The entire treatment group demonstrated considerable normalcy with a 0.200 > 0.05 score. Four homogenous test groups had a significance value of 0.200 > 0.05. The one-way ANOVA test yielded a significance value of 0.000 < 0.05. The research concluded that grape seed extract contains saponins, alkaloids, steroids, and flavonoids that may serve as anti-inflammatory agents and antioxidants to inhibit free radicals and speed wound healing in rats.

References

Yousef H, Alhajj M, Sharma S. Anatomy, skin (integument), epidermis. NYIT-COM: StatPearls Publishing, Treasure Island (FL), 2023. [Online]. Available: http://europepmc.org/abstract/MED/29262154

Laut M, Ndaong N, Utami T, Junersi M, Bria Seran Y. The Effectiveness of Topical Ointment Containing Ethanolic Extract of Acalypha Indica Leaves on Wound Healing on Mice (Mus Musculus). Jurnal Kajian Veteriner. 2019;7(1):1-1. doi: 10.35508/jkv.v7i1.01.

Pavletic MM. Atlas of Small Animal Wound Management and Reconstructive Surgery Fourth Edition. Hoboken., 2018.

Barku VY. Wound healing: contributions from plant secondary metabolite antioxidants. InWound healing-current perspectives 2019 May 2 (p. 13). Rijeka, Croatia: IntechOpen. doi: http://dx.doi.org/10.5772/intechopen.81208

El-Ferjani RM, Ahmad M, Dhiyaaldeen SM, Harun FW, Ibrahim MY, Adam H, Mohd. Yamin B, Al-Obaidi MM, Batran RA. In vivo assessment of antioxidant and wound healing improvement of a new schiff base derived Co (ii) complex in rats. Scientific reports. 2016 Dec 13;6(1):38748. doi: 10.1038/srep38748.

Hong YK, Chang YH, Lin YC, Chen B, Guevara BE, Hsu CK. Inflammation in wound healing and pathological scarring. Advances in Wound Care. 2023 May 1;12(5):288-300. doi: 10.1089/wound.2021.0161.

Kanta J. The role of hydrogen peroxide and other reactive oxygen species in wound healing. Acta Medica (Hradec Kralove). 2011 Jan 1;54(3):97-101. doi: 10.14712/18059694.2016.28.

Shafiq M, Chen Y, Hashim R, He C, Mo X, Zhou X. Reactive oxygen species-based biomaterials for regenerative medicine and tissue engineering applications. Frontiers in Bioengineering and Biotechnology. 2021 Dec 23;9:821288. doi: 10.3389/fbioe.2021.821288.

Coimbra S, Oliveira H, Reis F, Belo L, Rocha S, Quintanilha A, Figueiredo A, Teixeira F, Castro E, Rocha‐Pereira P, Santos‐Silva A. C‐reactive protein and leucocyte activation in psoriasis vulgaris according to severity and therapy. Journal of the European Academy of Dermatology and Venereology. 2010 Jul;24(7):789-96. doi: 10.1111/j.1468-3083.2009.03527.x.

Wang L. C-reactive protein levels in the early stage of COVID-19. Medecine et maladies infectieuses. 2020 Jun 1;50(4):332-4. doi: 10.1016/j.medmal.2020.03.007.

Rajab IM, Hart PC, Potempa LA. How C-reactive protein structural isoforms with distinctive bioactivities affect disease progression. Frontiers in immunology. 2020 Sep 10;11:573349. doi: 10.3389/fimmu.2020.02126.

Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, Leaper D, Georgopoulos NT. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS‐modulating technologies for augmentation of the healing process. International wound journal. 2017 Feb;14(1):89-96. doi: 10.1111/iwj.12557.

Dong R, Guo B. Smart wound dressings for wound healing. Nano Today. 2021 Dec 1;41:101290. doi: https://doi.org/10.1016/j.nantod.2021.101290.

Aitcheson SM, Frentiu FD, Hurn SE, Edwards K, Murray RZ. Skin wound healing: normal macrophage function and macrophage dysfunction in diabetic wounds. Molecules. 2021 Aug 13;26(16):4917. doi: 10.3390/molecules26164917.

Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiological reviews. 2019 Jan 1;99(1):665-706. doi: 10.1152/physrev.00067.2017.

Theoret C. Physiology of wound healing. Equine wound management. 2016 Nov 28:1-3.

Kumari A, Paul S, Sharma V. Genetic diversity analysis using RAPD and ISSR markers revealed discrete genetic makeup in relation to fibre and oil content in Linum usitatissimum L. genotypes. The Nucleus. 2018 Apr;61(1):45-53. doi: 10.1007/s13237-017-0206-7.

Joshi N, Nautiyal P, Papnai G, Supyal V, Singh K. Render a sound dose: Effects of implementing acoustic frequencies on plants’ physiology, biochemistry and genetic makeup. IJCS. 2019;7(5):2668-78.

Tsao R, Li H. 19 Analytical techniques for phytochemicals. Handbook of plant food phytochemicals. 2013:434. doi: 10.1002/9781118464717.ch19.

Flachowsky G, Chesson A, Aulrich K. Animal nutrition with feeds from genetically modified plants. Archives of Animal Nutrition. 2005 Feb 1;59(1):1-40. doi: 10.1080/17450390512331342368.

Waite H, Morton L. Hot water treatment, trunk diseases and other critical factors in the production of high-quality grapevine planting material. Phytopathologia Mediterranea. 2007 Apr 1;46(1):5-17.

Pereira CS, Morais R, Reis MJ. Deep learning techniques for grape plant species identification in natural images. Sensors. 2019 Nov 7;19(22):4850.

Santa K, Kumazawa Y, Nagaoka I. The potential use of grape phytochemicals for preventing the development of intestine-related and subsequent inflammatory diseases. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders). 2019 Sep 1;19(6):794-802. doi: 10.2174/1871530319666190529105226

ZMa ZF, Zhang H. Phytochemical constituents, health benefits, and industrial applications of grape seeds: A mini-review. Antioxidants. 2017 Sep 15;6(3):71. doi: 10.3390/antiox6030071.

Notoatmodjo S. Metodologi Penelitian Kesehatan, 3rd ed. Jakarta: Rineka Cipta, 2022.

Federer WT. Randomization and sample size in experimentation. pp. 1–15, Sep. 1966, Accessed: Feb. 07, 2024. [Online]. Available: https://hdl.handle.net/1813/32334

Ghozali I. Aplikasi analisis multivariete dengan program IBM SPSS 25. Semarang, 2018.

Farid A, Mohamed D, Mostafa D, Tarek R, Sherif V, Safwat G. Novel grape seed extract nanoparticles attenuate amikacin-induced nephrotoxicity in rats. AMB Express. 2023 Nov 20;13(1):129.

Hau J., Schapiro SJ. Handbook of Laboratory Animal Science Volume II - Animal Model, 3rd ed. Boca Raton, Florida, USA: CRC Press, 2011. doi: 10.1201/9780429439964.

Ghozali I. Aplikasi analisis multivariete dengan program IBM SPSS 23. Semarang: Universitas Diponegoro, 2016.

Frazee R, Manning A, Abernathy S, Isbell C, Isbell T, Kurek S, Regner J, Smith R, Papaconstantinou H. Open vs closed negative pressure wound therapy for contaminated and dirty surgical wounds: a prospective randomized comparison. Journal of the American College of Surgeons. 2018 Apr 1;226(4):507-12.

Swaim SF, Gillette RL, Sartin EA, Hinkle SH, Coolman SL. Effects of a hydrolyzed collagen dressing on the healing of open wounds in dogs. American journal of veterinary research. 2000 Dec 1;61(12):1574-8.

Hemmati AA, Aghel N, Rashidi I, Gholampur‐Aghdami A. Topical grape (Vitis vinifera) seed extract promotes repair of full thickness wound in rabbit. International wound journal. 2011 Oct;8(5):514-20.

Sagliyan A, Benzer F, Kandemir FM, Gunay C, Han MC, Ozkaraca MU. Beneficial effects of oral administrations of grape seed extract on healing of surgically induced skin wounds in rabbits. Revue Méd. Vét. 2012 Jan 1;163(1):11-7.

Erdemli ME, Ekhteiari Salmas R, Durdagi S, Akgul H, Demirkol M, Aksungur Z, Selamoglu Z. Biochemical changes induced by grape seed extract and low level laser therapy administration during intraoral wound healing in rat liver: an experimental and in silico study. Journal of Biomolecular Structure and Dynamics. 2018 Mar 12;36(4):993-1008.

Published

2024-02-29

How to Cite

Rizali, S. S., Leslie, W., Chairul, M., & Edlin, E. (2024). Testing the Effect of Grape Seed Extract (Vitis Vinifera L) on the Healing Process of Cut Wounds in Wistar White Rats. Poltekita : Jurnal Ilmu Kesehatan, 17(4), 1702–1712. https://doi.org/10.33860/jik.v17i4.3639

Issue

Section

Original Articles